2. Universe with homogeneous, massless scalar field

\[V(\phi) = 0 = \text{massless free scalar field} \]

\[V = \text{massless inflation (field)} \]

\[s = \frac{1}{2} \phi^2 + s \text{ (for non-homog. field)} \]

Assume homogeneous (\(\rho = \rho_0 \)), spatially flat universe.

Friedmann for flat universe with only inflation field is:

\[H^2 = \frac{8\pi G}{3} \rho = \frac{1}{3} \rho = \frac{1}{3} \rho V + V(\phi) \]

\[H = \frac{a}{a V} \rho \]

From energy continuity follows that:

\[s = -3H \dot{\phi} \]

\[s = \frac{1}{2} \phi^2 \]

\[P = \frac{1}{2} \rho - V \]

\[\ddot{s} + \frac{3}{V} \dot{s} = 0 \text{ (Field equation for } \phi \text{ field)} \]

For an \(\phi \) sub, we could try:

\[\phi = \frac{e^x}{x} \]

\[\ddot{\phi} = \frac{e^x}{x} \frac{e^x}{x} \]

\[\dot{\phi} = \frac{e^x}{x} \frac{e^x}{x} \]

For a \(\phi \) sub:

\[H = \frac{a}{a V} \rho = \frac{1}{2} M_p \phi^2 \]

\[\phi = \frac{e^x}{x} \frac{e^x}{x} \]

\[\rho = \frac{1}{2} M_p \phi^2 \frac{e^x}{x} \]

\[\frac{\rho}{\rho} = \frac{1}{e^{2x}} \frac{e^x}{x} \]

The curvature term can be written as:

\[H^2 = \frac{1}{2} M_p \phi^2 \frac{e^x}{x} \]

For matter-dom universe \(\phi, \frac{1}{2} = a \)

\[H = \frac{a}{a \phi} \]

For universe dominated by massless inflation:

\[a = \phi \]

So the magnitude of the curvature term behaves as \(\phi^2 \) in a universe dominated by field \(\phi \).

A universe dominated by massless scalar field becomes curvature dominated.

Conclusion: We might think of quasie"on dom by inflation field to decrease the curvature term as a function of time.

Contradiction here, so massless scalar field by itself is not a good candidate for inflation.