Due on Tuesday April 10 by 12.15.

1. **Gauge transformation of gravitoelectric and gravitomagnetic fields.**
 a) How do the gravitoelectric and gravitomagnetic fields \vec{G} and \vec{H} transform in a gauge transformation?
 b) There is a subclass of gauge transformations that leave \vec{G} and \vec{H} invariant. What is the condition for such gauge transformations?

2. **Test particle energy in linearized gravity.** We got from the geodesic equation the result
 \[
 \frac{dE}{dt} = -E \left[\partial_t \Phi + 2\vec{v} \cdot \nabla \Phi - \frac{1}{2} (\partial_i w_j + \partial_j w_i - \partial_t h_{ij}) v^i v^j \right],
 \]
 where $E = p^0$ is the time component of the test particle 4-momentum. This corresponds to the energy as observed by a fictitious 'background observer', who is still in the background coordinates and whose proper time is the background time t. Let's instead consider a physical observer, with four-velocity $u^\alpha = (u^0, u^i)$. Take the observer to remain at constant coordinates, i.e. $u_i = 0$. Find the equation for the time evolution of the observed energy $E_{\text{obs}} = -u_\alpha p^\alpha$ for a freely falling test particle, i.e.
 \[
 \frac{dE_{\text{obs}}}{dt} = \ldots
 \]
 Take $\vec{w} = 0$ (a possible gauge choice).

3. **Gravitomagnetic field of a rotating body.** Consider a homogeneous spherical shell with mass M, radius R, that is slowly rotating (i.e. calculate only to first order in velocity of mass motion) with angular velocity Ω.
 a) Using the transverse gauge, find the gravitoelectric and gravitomagnetic fields \vec{G} and \vec{H} at large distances ($r \gg R$) caused by this rotating mass. (Note that this is stationary situation, so time derivatives of the metric vanish.)
 b) Sketch the \vec{H} field lines.
 c) What will happen to a test particle that is dropped from a large distance? (Consider a particle at the equatorial plane; no calculations are required for this last question.)

4. **Effect of vector perturbations on geodesic motion.** Consider a metric where the scalar and tensor perturbations are zero, but not the vector perturbation. Take the vector perturbation to be constant in time and aligned with the z-axis, $w_i = f(x^k) \delta_{iz}$. Find the motion of a test particle that is not assumed to be initially at rest. (Assume that the test particle is moving at non-relativistic velocities, so that you can neglect terms that are non-linear in the velocity, but not crossterms between the velocity and the metric perturbation.)