§2.2 Point-Mass Lens

Violate earlier assumptions \(|l| < a_{\text{max}} \) (or \(\Xi \) smooth)

From where we started:

\[
\Delta = \frac{D_{\ell}}{D_d} \frac{yGM}{c^2} = \frac{D_{\ell}}{D_d D_d} \frac{yGM}{c^2} = \frac{m}{v^2} = \frac{\phi}{F}
\]

\(\Rightarrow \beta = \eta - \alpha = \left[1 - \frac{(\phi)^2}{F} \right] \eta \)

Choose \(\beta \) positive; \(\eta \) may have either sign

\(\begin{align*}
X = \frac{\phi}{\phi_E}, & \quad y = \frac{\beta}{\phi_E} \\
\Rightarrow & \quad y = \left(1 - \frac{1}{X^2} \right) x = x - \frac{1}{X} \Rightarrow x = \frac{1}{2} (y \pm \sqrt{y^2 + 1}) \\
X_+ > y, & \quad |X| > 1, \quad X_+ \geq 1 \\
-1 < X < 0 & \\
\end{align*} \)

\(\forall \phi, \quad \text{two image each side of lens and same} \)

For \(\beta = \phi_E, \quad \phi = \frac{1}{2} (1 \pm \sqrt{5}) \phi_E = \begin{cases} 1.62 \phi_E \\ -0.62 \phi_E \end{cases} \)

\(\mu(\phi) = \frac{m}{\phi^2} = \frac{(\phi_E)^2}{\phi}\quad \text{outside the mass distribution} \)

Magnification

\[
\mu = \frac{1}{\Delta A} = \frac{1}{(1-\eta)(1+\eta-2\eta)} = \frac{1}{1-\eta^2} = \frac{1}{1-x^2}
\]

\(\mu = 0 \quad \text{outside the mass distribution} \)

\[
= \pm \frac{1}{x^2} \left(\frac{y}{\sqrt{y^2+1}} + \sqrt{y^2+1} \right) \pm 2 \\
\quad \text{exercise, may be tedious} \\
\quad > 2 \quad (\rightarrow 2 \text{ as } y \rightarrow \infty); \quad \text{so that } \mu \rightarrow 1 \text{ and } \mu \rightarrow 0 \)

\(X_+ > 1 \Rightarrow \mu_+ > 1 \quad \text{this image is always magnified} \)

\(\mu_- < 0 \quad \text{mirror image, may be magnified or demagnified} \)

As \(y \rightarrow 0, \quad X_+ \rightarrow 1 (\phi_+ \rightarrow \phi_E) \) and \(\mu_+ \rightarrow \infty \)

\(X_- \rightarrow -1 (\phi_- \rightarrow -\phi_E) \) and \(\mu_- \rightarrow -\infty \)
Total magnification \(\mu_p = \mu_+ + |\mu_-| = \frac{y^2 + 2}{y\sqrt{y^2 + 4}} \)

For \(y = 1 \): \(\mu_+ = 1.171, \mu_- = -0.171 \Rightarrow \mu_p = 1.342 \)

The separation between images is \(\sqrt{y^2 + 4} \theta_E = 2\theta_E \), but in practice not much larger, so for \(y \gg 1 \), \(|\mu_-| \ll 1 \)
and this image cannot be seen.

Odd number theorem? The above applies also to an extended mass \(M \); but only for light rays that stay outside it. If the 1st ray passes through \(M \), it is deflected less and does not produce an image. If it passes outside \(M \), there will be a third ray, passing through \(M \), producing a third image. For a compact mass with \(y \gg 1 \),

\[\mu = \frac{1}{(1-y)(1+y-2y)} \approx \frac{1}{(1-y)^2} \ll 1 \] for this third image.
The simplest model for the density profiles of galaxies and clusters produces flat rotation curves (exercise)

\[\Sigma(r) = \frac{\sigma^2}{2\pi G r^2} \propto r^{-2} \]

\[\Rightarrow \text{surface mass density} \quad (\text{exercise}) \]

\[\Sigma(\infty) = \int_0^\infty 4\pi \sigma^2 \left(\frac{1}{\sqrt{r^2 + \sigma^2}} \right) \, dr = \frac{6\sigma^2}{2\pi G} \propto \Sigma^{-1} \]

\[\mathcal{H}(\theta) = 2\pi \frac{D_{\odot}}{D_S} \frac{\sigma^2}{\Sigma} \frac{1}{10^2} \]

\[\Rightarrow 1 + \mathcal{H} - 2\bar{n} = 1 \]

no radial critical curves

\[\mathbf{\alpha}(\theta) \cdot \mathbf{\bar{\alpha}}(\theta) = \mathbf{\bar{\alpha}}(\theta) \cdot \mathbf{\bar{\alpha}}(\theta) = \frac{\sigma^2}{10^2} \]

has constant magnitude \(\mathcal{H} \)

\[\tan \theta = \frac{\mathcal{H}}{10^2} \]

\[\text{Lens equation} \quad \beta = \theta - \alpha = \theta - \mathcal{H} \cdot \frac{\sigma}{10^2} \]

\[\text{or} \quad y = x - \frac{x}{1x1} \quad \text{where} \quad x = \frac{\sigma}{\mathcal{H}}, \quad y = \frac{\beta}{\mathcal{H}} \]

\[\text{choose } y > 0 \]

two solutions \(x = y+1 \) for \(0 < y < 1 \)

one solution \(x = y+1 \) for \(y > 1 \)

\[\text{Magnification} \quad \mu_+ = \frac{1}{1 - \bar{n}}(1 + \bar{n} - 2\bar{n}) = \frac{1}{1 - \bar{n}} = \frac{1x1}{1x1 - 1} \]

\[\mu_+ = \frac{y+1}{y} > 0 \]

\[\mu_- = \frac{y-1}{-y} < 0 \]
Two strange features:

1) Odd-number theorem violated

2) #images changes by 1, when source crosses critical curve, not causal

Due to singularity \(g(r) \to \infty \) at \(r \to 0 \) \(\Rightarrow \alpha \) not continuous at \(\theta = 0 \)

\[\beta = \theta - \alpha \]

Smooth the singularity into finite-density core \(\Rightarrow \alpha \) changes continuously

\(\Rightarrow \) a radial critical curve \(\frac{\partial \beta}{\partial \theta} = 0 \) and caustics appear at \(\beta_r < \theta_r \), \(\theta_r \) small

If the core region is small \(\Rightarrow \frac{\partial \alpha}{\partial \beta} \) and \(\frac{\beta}{\theta} \gg 1 \) \(\Rightarrow \) third image strongly demagnified

Parity of images determined by signs of \(\frac{\partial \beta}{\partial \alpha} \) and \(\frac{\beta}{\theta} \): both negative for third image \(\Rightarrow \mu > 0 \)
§2.9 Non-Symmetric Lenses

- Qualitative details of centrally condensed asymmetric lenses do not depend strongly on the radial profile.

- Breaking the symmetry leads to qualitatively new properties:

 central caustic point → finite curve, a source inside it may have 5 images.

Many observed lenses have 4 images; probably the 5th is invisible due to strong demagnification at the center.